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CLASSICAL MECHANICS

Thomas P. Mitchell, Ph.D.
Professor

Department of Mechanical and Environmental Engineering
University of California

Santa Barbara, Calif.

The aim of this chapter is to present the concepts and results of newtonian dynamics
which are required in a discussion of rigid-body motion. The detailed analysis of par-
ticular rigid-body motions is not included. The chapter contains a few topics which,
while not directly needed in the discussion, either serve to round out the presentation
or are required elsewhere in this handbook.

1.1 INTRODUCTION

The study of classical dynamics is founded on Newton’s three laws of motion and on
the accompanying assumptions of the existence of absolute space and absolute time.
In addition, in problems in which gravitational effects are of importance, Newton’s
law of gravitation is adopted. The objective of the study is to enable one to predict,
given the initial conditions and the forces which act, the evolution in time of a
mechanical system or, given the motion, to determine the forces which produce it.

The mathematical formulation and development of the subject can be approached in two
ways. The vectorial method, that used by Newton, emphasizes the vector quantities force
and acceleration. The analytical method, which is largely due to Lagrange, utilizes the
scalar quantities work and energy. The former method is the more physical and generally
possesses the advantage in situations in which dissipative forces are present. The latter is
more mathematical and accordingly is very useful in developing powerful general results.

1.2 THE BASIC LAWS OF DYNAMICS

The “first law of motion” states that a body which is under the action of no force
remains at rest or continues in uniform motion in a straight line. This statement is also
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1.4 MECHANICAL DESIGN FUNDAMENTALS

known as the “law of inertia,” inertia being that property of a body which demands
that a force is necessary to change its motion. “Inertial mass” is the numerical measure
of inertia. The conditions under which an experimental proof of this law could be carried
out are clearly not attainable.

In order to investigate the motion of a system it is necessary to choose a frame of refer-
ence, assumed to be rigid, relative to which the displacement, velocity, etc., of the system are
to be measured. The law of inertia immediately classifies the possible frames of reference
into two types. For, suppose that in a certain frame S the law is found to be true; then it must
also be true in any frame which has a constant velocity vector relative to S. However, the law
is found not to be true in any frame which is in accelerated motion relative to S. A frame of
reference in which the law of inertia is valid is called an “inertial frame,” and any frame in
accelerated motion relative to it is said to be “noninertial.” Any one of the infinity of inertial
frames can claim to be at rest while all others are in motion relative to it. Hence it is not
possible to distinguish, by observation, between a state of rest and one of uniform motion in
a straight line. The transformation rules by which the observations relative to two inertial
frames are correlated can be deduced from the second law of motion.

Newton’s “second law of motion” states that in an inertial frame the force acting on
a mass is equal to the time rate of change of its linear momentum. “Linear momentum,”
a vector, is defined to be the product of the inertial mass and the velocity. The law can
be expressed in the form

d�dt(mv) � F (1.1)

which, in the many cases in which the mass m is constant, reduces to

ma � F (1.2)

where a is the acceleration of the mass.
The “third law of motion,” the “law of action and reaction,” states that the force with

which a mass mi acts on a mass mj is equal in magnitude and opposite in direction to
the force which mj exerts on mi. The additional assumption that these forces are
collinear is needed in some applications, e.g., in the development of the equations govern-
ing the motion of a rigid body.

The “law of gravitation” asserts that the force of attraction between two point
masses is proportional to the product of the masses and inversely proportional to the
square of the distance between them. The masses involved in this formula are the
gravitational masses. The fact that falling bodies possess identical accelerations leads,
in conjunction with Eq. (1.2), to the proportionality of the inertial mass of a body to
its gravitational mass. The results of very precise experiments by Eotvös and others
show that inertial mass is, in fact, equal to gravitational mass. In the future the word
mass will be used without either qualifying adjective.

If a mass in motion possesses the position vectors r1 and r2 relative to the origins
of two inertial frames S1 and S2, respectively, and if further S1 and S2 have a relative
velocity V, then it follows from Eq. (1.2) that

r1 � r2 � Vt2 � const
(1.3)

t1 � t2 � const

in which t1 and t2 are the times measured in S1 and S2. The transformation rules Eq. (1.3),
in which the constants depend merely upon the choice of origin, are called “galilean
transformations.” It is clear that acceleration is an invariant under such transformations.

The rules of transformation between an inertial frame and a noninertial frame are
considerably more complicated than Eq. (1.3). Their derivation is facilitated by the
application of the following theorem: a frame S1 possesses relative to a frame S an angular
velocity � passing through the common origin of the two frames. The time rate of change
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of any vector A as measured in S is related to that measured in S1 by the formula

(dA�dt)S � (dA�dt)S1
� � � A (1.4)

The interpretation of Eq. (1.4) is clear. The first term on the right-hand side accounts
for the change in the magnitude of A, while the second corresponds to its change in
direction.

If S is an inertial frame and S1 is a frame rotating relative to it, as explained in the
statement of the theorem, S1 being therefore noninertial, the substitution of the posi-
tion vector r for A in Eq. (1.4) produces the result

vabs � vrel � � � r (1.5)

In Eq. (1.5) vabs represents the velocity measured relative to S, vrel the velocity relative
to S1, and � � r is the transport velocity of a point rigidly attached to S1. The law of
transformation of acceleration is found on a second application of Eq. (1.4), in which
A is replaced by vabs. The result of this substitution leads directly to 

(d2r�dt2)S � (d2r�dt2)S1
� � � (� � r) � �� � r � 2� � vrel (1.6)

in which �� is the time derivative, in either frame, of �. The physical interpretation of
Eq. (1.6) can be shown in the form

aabs � arel � atrans � acor (1.7)

where acor represents the Coriolis acceleration 2� � vrel. The results, Eqs. (1.5) and
(1.7), constitute the rules of transformation between an inertial and a nonintertial
frame. Equation (1.7) shows in addition that in a noninertial frame the second law of
motion takes the form

marel � Fabs − macor − matrans (1.8)

The modifications required in the above formulas are easily made for the case in which
S1 is translating as well as rotating relative to S. For, if D(t) is the position vector of the
origin of the S1 frame relative to that of S, Eq. (1.5) is replaced by

Vabs � (dD�dt)S � vrel � � � r

and consequently, Eq. (1.7) is replaced by

aabs � (d2D�dt2)S � arel � atrans � acor

In practice the decision as to what constitutes an inertial frame of reference depends
upon the accuracy sought in the contemplated analysis. In many cases a set of axes rigidly
attached to the earth’s surface is sufficient, even though such a frame is noninertial to the
extent of its taking part in the daily rotation of the earth about its axis and also its yearly
rotation about the sun. When more precise results are required, a set of axes fixed at the
center of the earth may be used. Such a set of axes is subject only to the orbital motion of
the earth. In still more demanding circumstances, an inertial frame is taken to be one
whose orientation relative to the fixed stars is constant.

1.3 THE DYNAMICS OF A SYSTEM OF MASSES

The problem of locating a system in space involves the determination of a certain
number of variables as functions of time. This basic number, which cannot be reduced
without the imposition of constraints, is characteristic of the system and is known as

CLASSICAL MECHANICS 1.5
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its number of degrees of freedom. A point mass free to move in space has three
degrees of freedom. A system of two point masses free to move in space, but subject
to the constraint that the distance between them remains constant, possesses five
degrees of freedom. It is clear that the presence of constraints reduces the number of
degrees of freedom of a system.

Three possibilities arise in the analysis of the motion-of-mass systems. First, the
system may consist of a small number of masses and hence its number of degrees of
freedom is small. Second, there may be a very large number of masses in the system,
but the constraints which are imposed on it reduce the degrees of freedom to a small
number; this happens in the case of a rigid body. Finally, it may be that the constraints
acting on a system which contains a large number of masses do not provide an appreciable
reduction in the number of degrees of freedom. This third case is treated in statistical
mechanics, the degrees of freedom being reduced by statistical methods.

In the following paragraphs the fundamental results relating to the dynamics of mass sys-
tems are derived. The system is assumed to consist of n constant masses mi (i � 1, 2, . . ., n).
The position vector of mi, relative to the origin O of an inertial frame, is denoted by ri. The
force acting on mi is represented in the form

(1.9)

in which Fi
e is the external force acting on mi, Fij is the force exerted on mi by mj, and

Fii is zero.

1.3.1 The Motion of the Center of Mass

The motion of mi relative to the inertial frame is determined from the equation

(1.10)

On summing the n equations of this type one finds

(1.11)

where Fe is the resultant of all the external forces which act on the system. But
Newton’s third law states that

Fij � −Fji

and hence the double sum in Eq. (1.11) vanishes. Further, the position vector rc of the
center of mass of the system relative to O is defined by the relation

(1.12)

in which m denotes the total mass of the system. It follows from Eq. (1.12) that

(1.13)

and therefore from Eq. (1.11) that

Fe �m d2rc �dt2 (1.14)

mvc � a
n

i�1

 mivi

mrc � a
n

i�1

 miri

Fe � a
n

i�1

 a
n

j�1

Fij � a
n

i�1

 mi 
dvi

dt

Fi
e � a

n

j�1

Fij � mi 
dvi

dt

Fi � Fe
i � a

n

j�1
Fij
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which proves the theorem: the center of mass moves as if the entire mass of the system
were concentrated there and the resultant of the external forces acted there.

Two first integrals of Eq. (1.14) provide useful results [Eqs. (1.15) and (1.16):

(1.15)

The integral on the left-hand side is called the “impulse” of the external force.
Equation (1.15) shows that the change in linear momentum of the center of mass is
equal to the impulse of the external force. This leads to the conservation-of-linear-
momentum theorem: the linear momentum of the center of mass is constant if no
resultant external force acts on the system or, in view of Eq. (1.13), the total linear
momentum of the system is constant if no resultant external force acts:

(1.16)

which constitutes the work-energy theorem: the work done by the resultant external
force acting at the center of mass is equal to the change in the kinetic energy of the
center of mass.

In certain cases the external force Fi
e may be the gradient of a scalar quantity V

which is a function of position only. Then

Fe � −∂V/∂rc

and Eq (1.16) takes the form

(1.17)

If such a function V exists, the force field is said to be conservative and Eq. (1.17) provides
the conservation-of-energy theorem.

1.3.2 The Kinetic Energy of a System

The total kinetic energy of a system is the sum of the kinetic energies of the individual
masses. However, it is possible to cast this sum into a form which frequently makes
the calculation of the kinetic energy less difficult. The total kinetic energy of the masses
in their motion relative to O is

but ri � rc � �i

where �i is the position vector of mi relative to the
system center of mass C (see Fig. 1.1).

Hence

T �
1

2 a
n

i�1

 mir
. 2
c � a

n

i�1

 mir
.
c #  �

.
i �

1

2 a
n

i�1

 mi�
.

i
2

T �
1

2
 a

n

i�1

 miv
2
i

c1
2
mv2

c � V d 2
1

� 0

�
2

1

Fe # rc �
1

2
mv2

c d
2

1

�
t2

t1

Fe dt � mvcst2d � mvcst1d
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but

by definition, and so

(1.18)

which proves the theorem: the total kinetic energy of a system is equal to the kinetic energy
of the center of mass plus the kinetic energy of the motion relative to the center of mass.

1.3.3 Angular Momentum of a System (Moment of Momentum)

Each mass mi of the system has associated with it a linear momentum vector mivi. The
moment of this momentum about the point O is ri � mivi. The moment of momentum
of the motion of the system relative to O, about O, is

It follows that

which, by Eq. (1.10), is equivalent to

(1.19)

It is now assumed that, in addition to the validity of Newton’s third law, the force Fij is
collinear with Fji and acts along the line joining mi to mj, i.e., the internal forces are
central forces. Consequently, the double sum in Eq. (1.19) vanishes and

(1.20)

where M(O) represents the moment of the external forces about the point O. The following
extension of this result to certain noninertial points is useful.

Let A be an arbitrary point with position vector a relative to the inertial point O
(see Fig. 1.2). If �i is the position vector of mi relative to A, then in the notation
already developed

Thus (d�dt) H(A) � (d�dt)H(O) � � mvc � a
�m(dvc�dt), which reduces on application of Eqs. (1.14)
and (1.20) to

The validity of the result

(d�dt)H(A) � M(A) (1.21)

sd/dtdHsAd � MsAd � a
.

� mvc

a
.

HsAd � a
n

i�1

 �i � mi 
dri

dt
 � a

n

i�1

sri � ad � mi 
dri

dt
� HsOd � a � mvc

d

dt
 HsOd � a

n

i�1

 ri � Fe
i � MsOd

d

dt
 HsOd � a

n

i�1

 ri � Fi
e � a

n

i�1

 ri � a
n

j�1

 Fij

d

dt
HsOd � a

n

i�1

ri � mi
d2ri

dt2

HsOd � a
n

i�1

 ri � mivi

T �
1

2
 mr

.
c
2 �

1

2
 a

n

i�1

 mi�
.

i
2

a
n

i�1

 mi�i � 0
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is assured if the point A satisfies either of the conditions

1. � 0; i.e., the point A is fixed relative to O.

2. is parallel to vc; i.e., the point A is moving parallel to the center of mass of the
system.

A particular, and very useful case of condition 2 is that in which the point A is the
center of mass. The preceding results [Eqs. (1.20) and (1.21)] are contained in the
theorem: the time rate of change of the moment of momentum about a point is equal
to the moment of the external forces about that point if the point is inertial, is moving
parallel to the center of mass, or is the center of mass.

As a corollary to the foregoing, one can state that the moment of momentum of a
system about a point satisfying the conditions of the theorem is conserved if the
moment of the external forces about that point is zero.

The moment of momentum about an arbitrary point A of the motion relative to A is

(1.22)

If the point A is the center of mass C of the system, Eq. (1.22) reduces to

Hrel(C) � H(C) (1.23)

which frequently simplifies the calculation of H(C).
Additional general theorems of the type derived above are available in the litera-

ture. The present discussion is limited to the more commonly applicable results.

1.4 THE MOTION OF A RIGID BODY

As mentioned earlier, a rigid body is a dynamic system that, although it can be considered
to consist of a very large number of point masses, possesses a small number of degrees of
freedom. The rigidity constraint reduces the degrees of freedom to six in the most general
case, which is that in which the body is translating and rotating in space. This can be seen
as follows: The position of a rigid body in space is determined once the positions of three
noncollinear points in it are known. These three points have nine coordinates, among
which the rigidity constraint prescribes three relationships. Hence only six of the coordi-
nates are independent. The same result can be obtained otherwise.

Rather than view the body as a system of point masses, it is convenient to consider it to
have a mass density per unit volume. In this way the formulas developed in the analysis of
the motion of mass systems continue to be applicable if the sums are replaced by integrals.

The six degrees of freedom demand six equations of motion for the determination
of six variables. Three of these equations are provided by Eq. (1.14), which describes
the motion of the center of mass, and the remaining three are found from moment-of-
momentum considerations, e.g., Eq. (1.21). It is assumed, therefore, in what follows
that the motion of the center of mass is known, and the discussion is limited to the
rotational motion of the rigid body about its center of mass C.∗

Let � be the angular velocity of the body. Then the moment of momentum about C
is, by Eq. (1.3),

(1.24)HsCd � �
V

 r � s� � rd� dV

HrelsAd � a
n

i�1

 �i � mi 
d�i

dt
 � a

n

i�1

 �i � misr
.
i � a

. d � HsAd � a
.

� a
n

i�1

 mi�i

a
.
a
.
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where r is now the position vector of the element of volume dV relative to C (see Fig. 1.3),
� is the density of the body, and the integral is taken over the volume of the body. By a
direct expansion one finds

r � (� � r) � r2� � r(r ⋅ �) � r2� � rr ⋅ �
(1.25)

� r2I ⋅ � � rr ⋅ � � (r2I � rr) ⋅ �

and hence H(C) � I(C) ⋅ � (1.25)

where (1.26)

is the inertia tensor of the body about C.
In Eq. (1.26), I denotes the identity tensor. The inertia tensor can be evaluated once

the value of � and the shape of the body are prescribed. We now make a short digres-
sion to discuss the structure and properties of I(C).

For definiteness let x, y, and z be an orthogonal set of cartesian axes with origin at
C (see Fig. 1.3). Then in matrix notation

where

. . . . . . . . . . . . .

It is clear that:

1. The tensor is second-order symmetric with real elements.

2. The elements are the usual moments and products of inertia.

Ixy � �
V

�xy dV

Ixx � �
V

�sy2 � z2d dV

IsCd � ° Ixx 2Ixy 2Ixz

2Iyx Iyy 2Iyz

2Izx 2Izy Izz

¢

IsCd � �
V

�sr2I � rrd dV
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3. The moment of inertia about a line through C defined by a unit vector e is

e ⋅ I(C) ⋅ e

4. Because of the property expressed in condition 1, it is always possible to determine
at C a set of mutually perpendicular axes relative to which I(C) is diagonalized.

Returning to the analysis of the rotational motion, one sees that the inertia tensor
I(C) is time-dependent unless it is referred to a set of axes which rotate with the body.
For simplicity the set of axes S1 which rotates with the body is chosen to be the
orthogonal set in which I(C) is diagonalized. A space-fixed frame of reference with
origin at C is represented by S. Accordingly, from Eqs. (1.4) and (1.21),

[(d/dt)H(C)]S � [(d/dt)H(C)]S1
� � � H(C) � M(C) (1.27)

which, by Eq. (1.25), reduces to

I(C) � (d�/dt) � � � I(C) � � � M(C) (1.28)

where H(C) � iIxx�x � jIyy�y � kIzz�z (1.29)

In Eq. (1.29) the x, y, and z axes are those for which

and i, j, k are the conventional unit vectors. Equation (1.28) in scalar form supplies
the three equations needed to determine the rotational motion of the body. These equa-
tions, the Euler equations, are

(1.30)

The analytical integration of the Euler equations in the general case defines a problem
of classical difficulty. However, in special cases solutions can be found. The sources of the
simplifications in these cases are the symmetry of the body and the absence of some com-
ponents of the external moment. Since discussion of the various possibilities lies outside
the scope of this chapter, reference is made to Refs. 1, 2, 6, and 7 and, for a survey of
recent work, to Ref. 3. Of course, in situations in which energy or moment of momentum,
or perhaps both, are conserved, first integrals of the motion can be written without employ-
ing the Euler equations. To do so it is convenient to have an expression for the kinetic ener-
gy T of the rotating body. This expression is readily found in the following manner.

The kinetic energy is

which, by Eqs. (1.24), (1.25), and (1.26), is

(1.31)T �
1

2
 � # IsCd #�

�
1

2 �
V
 �� # [r � s� � rd] dV

T �
1

2 �
V

�s� � rd2 dV

Ixxsd	x>dtd 1 	y	zsIzz 2 Iyyd 5 Mx

Iyysd	y>dtd 1 	z	xsIxx 2 Izzd 5 My

Izzsd	z>dtd 1 	x	ysIyy 2 Ixxd 5 Mz

IsCd � ° Ixx 0 0

0 Iyy 0

0 0 Izz

¢
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or, in matrix notation,

Equation (1.31) can be put in a simpler form by writing

and hence (1.32)

In Eq. (1.32) I
		

is the moment of inertia of the body about the axis of the angular
velocity vector �.

1.5 ANALYTICAL DYNAMICS

The knowledge of the time dependence of the position vectors ri(t) which locate an n-mass
system relative to a frame of reference can be attained indirectly by determining the depen-
dence upon time of some parameters qj ( j � 1, . . ., m) if the functional relationships

ri � ri(qj, t) i � 1, . . ., n; j � 1, . . ., m (1.33)

are known. The parameters qj which completely determine the position of the system
in space are called “generalized coordinates.” Any m quantities can be used as general-
ized coordinates on condition that they uniquely specify the positions of the masses.
Frequently the qj are the coordinates of an appropriate curvilinear system.

It is convenient to define two types of mechanical systems:

1. A “holonomic system” is one for which the generalized coordinates and the time
may be arbitrarily and independently varied without violating the constraints.

2. A “nonholonomic system” is such that the generalized coordinates and the time
may not be arbitrarily and independently varied because of some (say s) noninte-
grable constraints of the form

(1.34)

In the constraint equations [Eq. (1.34)] the Aji and Aj represent functions of the qk
and t. Holonomic and nonholonomic systems are further classified as “rheonomic”
or “scleronomic,” depending upon whether the time t is explicitly present or absent,
respectively, in the constraint equations.

1.5.1 Generalized Forces and d’Alembert’s Principle

A virtual displacement of the system is denoted by the set of vectors 
ri. The work
done by the forces in this displacement is

(1.35)
W � a
n

i�1

 Fi 
#  
ri

a
m

i�1

Aji dqi � Aj dt � 0� j �  1, 2, . . ., s

T 5
1

2
I			2

T �
1

2
 	2s�>	d # IsCd # s�>	d

2T � s	x	y	zd° Ixx 0 0

0 Iyy 0

0 0 Izz

¢ °	x

	y

	z

¢
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If the force Fi, acting on the mass mi, is separable in the sense that

Fi � Fi
a � Fi

c (1.36)

in which the first term is the applied force and the second the force of constraint, then

(1.37)

The generalized applied forces and the generalized forces of constraint are defined by

(1.38)

and (1.39)

respectively. Hence, Eq. (1.37) assumes the form

(1.40)

If the virtual displacement is compatible with the instantaneous constraints 
t � 0,
and if in such a displacement the forces of constraint do work, e.g., if sliding friction
is absent, then

(1.41)

The assumption that a function V(qj, t) exists such that

leads to the result

(1.42)

In Eq. (1.42), V(qj, t) is called the potential or work function.
The first step in the introduction of the kinetic energy of the system is taken by

using d’Alembert’s principle. The equations of motion [Eq. (1.10)] can be written as

and consequently

(1.43)

The principle embodied in Eq. (1.43) constitutes the extension of the principle of vir-
tual work to dynamic systems and is named after d’Alembert. When attention is con-
fined to 
ri which represent virtual displacements compatible with the instantaneous
constraints and to forces Fi which satisfy Eqs. (1.36) and (1.41), the principle states
that

(1.44)a
m

j�1

Qa
j 
qj � a

n

i�1

mir
$

i
# 
ri

a
n

i�1

sFi � mir
$

id # 
ri � 0

Fi 2 mir
$

i 5 0


W 5 2
V

Qa
j 5 2'V/'qj


W � a
m

j�1

 Qa
j  
qj


W � a
m

j�1

Qa
j  
qj � a

m

j�1

Qc
j  
qj � a

n

i�1

sFa
i � Fc

i d #
'ri

't
 
t

Qc
j � a

n

i�1
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i
# 'ri

'qj

Qa
j � a

n

i�1

 Fa
i
# 'ri

'qj


W � a
n

i�1

sFa
i � Fc

i d ca
m

j�1

 'ri

'qj
 
qj �

'ri
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t d
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1.5.2 The Lagrange Equations

The central equations of analytical mechanics can now be derived. These equations,
which were developed by Lagrange, are presented here for the general case of a rheonomic
nonholonomic system consisting of n masses mi, m generalized coordinates qi, and s constraint
equations

(1.45)

The equations are found by writing the acceleration terms in d’Alembert’s principle
[Eq. (1.43)] in terms of the kinetic energy T and the generalized coordinates. By definition

where

Thus

Accordingly,

(1.46)

and by summing over all values of j, one finds

(1.47)

because

for instantaneous displacements. From Eqs. (1.44) and (1.47) it follows that

(1.48)

The 
qj which appear in Eq. (1.48) are not independent but must satisfy the instanta-
neous constraint equations

(1.49)

The “elimination” of s of the 
qj between Eqs. (1.48) and (1.49) is effected, in the
usual way, by the introduction of s Lagrange multipliers �k(k � 1, 2, . . ., s). This step
leads directly to the equations

(1.50)
d

dt

'T
'q

.
j

�
'T
'qj

� Qa
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These m second-order ordinary differential equations are the Lagrange equations of
the system. The general solution of the equations is not available.∗ For a holonomic
system with n degrees of freedom, Eq. (1.50) reduces to

(1.51)

In the presence of a function V such that

and

Eqs. (1.51) can be written in the form

(1.52)

in which l � T � V

The scalar function l—the lagrangian—which is the difference between the kinetic and
potential energies is all that need be known to write the Lagrange equations in this case.

The major factor which contributes to the solving of Eq. (1.52) is the presence of
ignorable coordinates. In fact, in dynamics problems, generally, the possibility of find-
ing analytical representations of the motion depends on there being ignorable coordi-
nates. A coordinate, say qk, is said to be ignorable if it does not appear explicitly in the
lagrangian, i.e., if

(1.53)

If Eq. (1.53) is valid, then Eq. (1.52) leads to

and hence a first integral of the motion is available. Clearly the more ignorable coordi-
nates that exist in the lagrangian, the better. This being so, considerable effort has
been directed toward developing systematic means of generating ignorable coordinates
by transforming from one set of generalized coordinates to another, more suitable, set.
This transformation theory of dynamics, while extensively developed, is not generally
of practical value in engineering problems.

1.5.3 The Euler Angles

To use lagrangian methods in analyzing the motion of a rigid body one must choose a set
of generalized coordinates which uniquely determines the position of the body relative to
a frame of reference fixed in space. It suffices to examine the motion of a body rotating
about its center of mass.

An inertial set of orthogonal axes �, 
, and � with origin at the center of mass and a
noninertial set x, y, and z fixed relative to the body with the same origin are adopted.
The required generalized coordinates are those which specify the position of the x, y,
and z axes relative to the �, 
, and � axes. More than one set of coordinates which
achieves this purpose can be found. The most generally useful one, viz., the Euler
angles, is used here.

'l>'q. k � const � ck

'l>'qk � 0

d

dt

'l
'q

.
j

�
'l
'qj

� 0     j � 1, 2, . . ., n

'V>'q. j � 0

Qa
j � 2'V>'qj

d

dt

'T
'q

.
j

�
'T
'qj

� Qa
j     j � 1, . . ., n
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The frame �, 
, and � can be brought into coincidence with the frame x, y, and z by
three finite rigid-body rotations through angles �, �, and �,∗ in that order, defined as
follows (see Fig. 1.4):

1. A rotation about the � axis through an angle � to produce the frame x1, y1, z1

2. A rotation about the x1 axis through an angle � to produce the frame x2, y2, z2

3. A rotation about the z2 axis through an angle � to produce the frame x3, y3, z3,
which coincides with the frame x, y, z

Each rotation can be represented by an orthogonal matrix operation so that the
process of getting from the inertial to the noninertial frame is

(1.54a)

(1.54b)

(1.54c)

Consequently,

(1.55)

where

D5CBA5 ¶ cos �  cos � � cos �  sin �  sin �         cos �  sin � � cos �  cos �  sin �

2sin �  cos � � cos �  sin � cos �   2sin �  sin � � cos�  cos �  cos �

sin � sin � 2sin � cos �

sin � sin �

cos � sin �

cos �

∂
° x

y

z

¢ 5 CBA° �




�

¢ 5 D° �




�

¢

° x3

y3

z3

¢ � ° cos � sin � 0

2sin � cos � 0

0 0 1

¢ ° x2

y2

z2

¢ � C° x2

y2

z2

¢
° x2

y2

z2

¢ � °1 0 0

0 cos � sin �

0 2sin � cos �

¢ ° x1

y1

z1

¢ � B° x1

y1

z1

¢
° x1

y1

z1

¢ � ° cos � sin � 0

2sin � cos � 0

0 0 1

¢ ° �




�

¢ � A° �




�

¢
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FIG. 1.4

∗This notation is not universally adopted. See Ref. 5 for discussion.
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Since A, B, and C are orthogonal matrices, it follows from Eq. (1.55) that

(1.56)

where the prime denotes the transpose of the matrix. From Eq. (1.55) one sees that, if
the time dependence of the three angles �, �, � is known, the orientation of the x, y, z
and axes relative to the �, 
, and � axes is determined. This time dependence is sought
by attempting to solve the Lagrange equations.

The kinetic energy T of the rotating body is found from Eq. (1.31) to be

2T � Ixx	
2
x � Iyy	

2
x � Izz	

2
z (1.57)

in which the components of the angular velocity 	 are provided by the matrix equation

(1.58)

It is to be noted that if

(1.59)

none of the angles is ignorable. Hence considerable difficulty is to be expected in
attempting to solve the Lagrange equations if this inequality, Eq. (1.59), holds. A simi-
lar inference could be made on examining Eq. (1.30). The possibility of there being
ignorable coordinates in the problem arises if the body has axial, or so-called kinetic,
symmetry about (say) the z axis. Then

Ixx � Iyy � I

and, from Eq. (1.57),

(1.60)

The angles � and � do not occur in Eq. (1.60). Whether or not they are ignorable
depends on the potential energy V(�, �, �).

1.5.4 Small Oscillations of a System near Equilibrium

The Lagrange equations are particularly useful in examining the motion of a system
near a position of equilibrium. Let the generalized coordinates q1, q2, . . ., qn—the
explicit appearance of time being ruled out—represent the configuration of the system.
It is not restrictive to assume the equilibrium position at

q1 and q2 � � � � � qn � 0

and, since motion near this position is being considered, the qi and may be taken to
be small.

The potential energy can be expanded in a Taylor series about the equilibrium point
in the form

(1.61)Vsq1
c qnd � Vs0d � a

n

i�1

a'V
'qi
b

0
 qi �

1

2
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 a
j

 a '2V
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In Eq. (1.61) the first term can be neglected because it merely changes the potential
energy by a constant and the second term vanishes because is zero at the equi-
librium point. Thus, retaining only quadratic terms in qi, one finds

(1.62)

in which (1.63)

are real constants.
The kinetic energy T of the system is representable by an analogous Taylor series

(1.64)

where Tij � Tji (1.65)

are real constants. The quadratic forms, Eqs. (1.62) and (1.64), in matrix notation, a
prime denoting transposition are

(1.66)

and (1.67)

In these expressions v and t represent the matrices with elements Vij and Tij, respec-
tively, and q represents the column vector (q1, . . ., qn). The form of Eq. (1.67) is neces-
sarily positive definite because of the nature of kinetic energy. Rather than create the
Lagrange equations in terms of the coordinates qi, a new set of generalized coordi-
nages �i is introduced in terms of which the energies are simultaneously expressible as
quadratic forms without cross-product terms. That the transformation to such coordi-
nates is possible can be seen by considering the equations

vbj � �jtbj j � 1, 2, . . ., n (1.68)

in which �j, the roots of the equation

|v� �t| � 0

are the eigenvalues—assumed distinct—and bj are the corresponding eigenvectors.
The matrix of eigenvectors bj is symbolized by B, and the diagonal matrix of eigenvalues
�j by �. One can write

and

because of the symmetry of v and t. Thus, if �j � �k, it follows that

and, since the eigenvectors of Eq. (1.68) are each undetermined to within an arbitrary
multiplying constant, one can always normalize the vectors so that

(1.69)
Hence B�tB � I

bri tbi 5 1

brktbj � 0    k 2 j

brkvbj � �k brktbj

brkvbj � �j brktbj

T 5
1

2
 q. rtq.

V 5
1

2
 qrvq

Tsq.i
c q

.d �
1

2
 a

i

 a
j

 Tij q
.
i q

.
j

Vij 5 s'2V>'qi 'qjd0 5 Vji

Vsq1
c qnd �

1

2
 a

i

 a
j

 Vij qi qj

'V>'qi
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where I is the unit matrix. But

vB � tB� (1.70)

and so B�vB � B�tB� � � (1.71)

Furthermore, denoting the complex conjugate by an overbar, one has

and (1.72)

since v and t are real. However,

(1.73)

because v and t are symmetric. From Eqs. (1.72) and (1.73) it follows that

(1.74)

The symmetry and positive definiteness of t ensure that the form is real and
positive definite. Consequently the eigenvalues �j, and eigenvectors bj, are real.
Finally, one can solve Eq. (1.68) for the eigenvalues in the form

(1.75)

The transformation from the qi to the �i coordinates can now be made by writing

q � B�

from which (1.76)

and (1.77)

It is seen from Eqs. (1.76) and (1.77) that V and T have the desired forms and that the
corresponding Lagrange equations (1.52) are

(1.78)

where 	2
i � �i. If the equilibrium position about which the motion takes place is stable, the 	2

i
are positive. The eigenvalues �i must then be positive, and Eq. (1.75) shows that V is positive
definite. In other words, the potential energy is a minimum at a position of stable equilibrium.
In this case, the motion of the system can be analyzed in terms of its normal modes—the n
harmonic oscillators Eq. (1.78). If the matrix V is not positive definite, Eq. (1.75) indicates that
negative eigenvalues may exist, and hence Eqs. (1.78) may have hyperbolic solutions. The
equilibrium is then unstable. Regardless of the nature of the equilibrium, the Lagrange equa-
tions (1.78) can always be arrived at, because it is possible to diagonalize simultaneously two
quadratic forms, one of which (the kinetic-energy matrix) is positive definite.

1.5.5 Hamilton’s Principle

In conclusion it is remarked that the Lagrange equations of motion can be arrived at
by methods other than that presented above. The point of departure adopted here is
Hamilton’s principle, the statement of which for holonomic systems is as follows.

d2�i>dt2 � 	2
i �i � 0    i � 1, . . ., n

T �
1

2
q
. rtq

.
�

1

2
�
. rBrtB�

.
�

1

2
�
. rI�.

V 5
1

2
qrvq 5

1

2
�rBrvB� 5

1

2
�r��

�j 5 brjvbj>brjtbj

brjtbj

s�j 2 �jdbrjtbj 5 0

brjvbj � �jbrjtbj

brjvbj � �j brj tbj

vbj 5 �j tbj
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Provided the initial (t1) and final (t2) configurations are prescribed, the motion of
the system from time t1 to time t2 occurs in such a way that the line integral

where l � T � V. That the Lagrange equations [Eq. (1.52)] can be derived from this
principle is shown here for the case of a single-mass, one-degree-of-freedom system.
The generalization of the proof to include an n-degree-of-freedom system is made
without difficulty.

The lagrangian is

in which q is the generalized coordinate and q(t) describes the motion that actually
occurs. Any other motion can be represented by

(1.79)

in which f(t) is an arbitrary differentiable function such that f (t1) and f (t2) � 0 and ε is
a parameter defining the family of curves . The condition

is tantamount to

(1.80)

for all f(t). But

which, by Eq. (1.79), is

(1.81)

Its second term having been integrated by parts, Eq. (1.81) reduces to

because f(t1) � f(t2) � 0. Hence Eq. (1.80) is equivalent to

(1.82)

for all f(t). Equation (1.82) can hold for all f(t) only if

which is the Lagrange equation of the system.
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The extension to an n-degree-of-freedom system is made by employing n arbitrary
differentiable functions fk(t), k � 1, . . ., n such that fk(t1) � fk(t2) � 0. For the general-
izations of Hamilton’s principle which are necessary in treating nonholonomic systems,
the references should be consulted.

The principle can be extended to include continuous systems, potential energies
other than mechanical, and dissipative sources. The analytical development of these
and other topics and examples of their applications are presented in Refs. 4 and 8
through 12.
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